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Abstract. The effect of atransverse field on the magnetizations and phase diagrams of a decorated
two-sublattice Ising model ferrimagnetic consisting of two magnetic atoms A and B with spins
o4 = 1/2 andSp = lisinvestigated within the framework of the effective field theory. A number

of characteristic phenomena, such as the possibility of compensation points and two transitions,
are found.

1. Introduction

Ferrimagnetism has been extensively investigated in the past both experimentally and
theoretically, since important magnetic materials for technological applications, such as garnets
and ferrites, are ferrimagnetic. Ferrimagnets have several sublattices with a finite resultant
moment and show paramagnetic behaviour above the transition tempefaturecontrast

with a ferromagnet, there is an interesting possibility of the existence, under certain conditions,
of a compensation temperatufg (7; < T.), at which the resultant magnetization vanishes
[1,2]. In recent works, the effect of disordered interfaces with alloying typ&A_1 on the
transition temperature and magnetization has been investigated for a bilayer system consisting
of two magnetic layers A and B where A and B can possess different bulk properties [3-6]. The
effects of a crystal field and the magnitude of the spon the phase diagranf(and7;)

have been examined and it was clarified that more than one compensation point can exist in the
disordered ferrimagnetic alloy as well as the diluted mixed spihéahd spin-1 ferrimagnetic

Ising systems [7-11].

Decorated Ising spin models were originally introduced in the literature by Syozi [12]
as exactly solvable models in statistical physics. They show several kinds of ferrimagnetic
behaviour in the temperature dependence of the resultant magnetization according to the
assumed values of parameters. The arrangement of atoms in these models is like that in
the normal spinel. However, most of the decorated models studied have been restricted to
the effects of a crystal field on the phase diagram [13-16]. On the other hand, there has
been considerable interest in the study of quantum fluctuations in classical spin models. The
simplest of such systems is the Ising model in a transverse field. The gpitrahsverse
Ising model, originally introduced by De Gennes [17] as a valuable model for tunnelling of
the proton in hydrogen-bonded ferroelectrics [18] such as those gPRiItype, has been
extensively studied by the use of various techniques [19-23] including the effective theory field
treatment [24, 25] based on a generalized but approximated Callen—Suzuki relation derived by
Sa Barretoet al.
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The purpose of this work is to study via effective field theory [26, 27] the effect of a
transverse field on the magnetic properties (the critical temperdiyréhe compensation
temperaturd} and the magnetization curves) of a decorated two sublattice ferrimagnetic Ising
system consisting of two magnetic atoms A and B with spins= 1/2 andSz = 1. As far
as we know, such a study has not been carried out. In particular the results obtained here may
clarify the fact that the applied transverse field can control the compensation points. Therefore,
the outline of this work is as follows. The formulation of the problem is given in section 2
on the basis of the effective field theory. The results are discussed in section 3 and a brief
conclusion is given in section 4.

2. Formulation

We consider a decorated ferrimagnetic Ising system. The whole lattice is divided into two
sublattices k. and L,. Every point of Ly is always occupied by an A atom with the fixed spin
oa (04 = 1/2). That of Ly, which is composed of one decorating point on every bond pisL
always occupiedya B atom with a fixed spiiz (Sp = 1). The exchange interaction between
A and B atoms is assumed to be antiferromagnetic. Furthermore, we assume that there exists
a ferromagnetic exchange interaction between every nearest-neighbour pair of A atoms. For
clarification, the two-dimensional decorated system is depicted in figure 1. The Hamiltonian
of the system has the form

H=1JY 0/Si—J) oici—Q) of =20y S @)

) @) i i

whereo; (S;) andoy (S7) denote thez and x components of a quantum spzi;j (SE) of
magnituder = 1/2 (S = 1) at sitei (m) andQ; (£2,) is the transverse field acting ofi (S7).
JandJ’' (J > 0 andJ’ < 0) are the exchange interactions. The first two summations are
carried out only over nearest-neighbour pairs of spins.

Figure 1. The two-dimensional decorated spin system consisting of magnetic atoms A and B with
spin valuesry, = 1/2 andop = 1, where the A atoms (white points) form a square lattice.

Using a single-site cluster approximation in which attention is focused on a cluster
comprising just a single selected spin labelled 0, and the neighbouring spins with which it
directly interacts, the Hamiltonian can split into two pafs= Hp + H' where Hy includes
all the parts ofH associated with the site 0.
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Following S Barretoet al [24, 25], we can use the approximate relation derived for the
transverse Ising model,

P
(SL) = <tro[50(, exp( ﬂHo)]> @
trolexp(—pB Ho)]
that neglects the fact th&, and H’ do not commute. In the limi2 — 0, the Hamiltonian
contains onhys, and (2) becomes exact. The single angular brackets denote the thermal average
for a fixed spatial configuration of the spins.
For a decorated system the quantities of interest are the longitudinal magnetizations
andm?, the transverse magnetization§ andm? and the quadrupolar moment$ andg?
which are defined by

m3 = {{Sou))e ®3)
m? = ({Soa))e 4
qs = ((S&)e (5)

wherea = z, x and{. . .). indicates the usual canonical ensemble thermal average for a given
configuration.
The evaluation of the trace in (2) yields the following equations:

1 N M N M 2 -1/2
mg = 5(( D (—ISH+ Z(ﬁa})) ([ D (IS + Z(J/o;)] + 92)
j=1 j=1 j=1 j=1
1 N M ) 2 )
xtanh[éﬂ [;(—JSj) +;(J/U;‘)] +Ql]> (6)
1 N M 2 -1/2
m = 5<91<[Z(—JS;’-> * Z(J’aj)] + 9%)
j=1 j=1

1 N M 2
x tanh|:§;3 [X;(—JSJZ.) + Zl(J/af)] + Q§]> (7)
i= j=
N’ N 2 -1/2 N’ 2
mS = <(— ZJU;)<<ZJJ;> +Q§> Zsinh[ﬂ (Zm}) +Q§]
=1 j=1 i=1
N’ 2 -1
X (2 COSh|:,3 ( .lcr_f) + Qg] + l) > (8)
j=1

J=

N 2 ~1/2 N 2
<<Z Jo_f) +Q§) ZCosh[ﬂ <Zjo;) + Qg]
= =1

Jj=

my = <92<< é Ja;)z + Q§>‘1/22 sinh[ﬁl < é Jo;)z + Qg]
X (2 cosh[ﬂl (i_; Jaj)z + Qg] + 1)1> (10)
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i ={((Som) ) (o) o2) cosh[ﬁl ($0m) <]

J

X (2 cosh[ﬂl (i_; Jaf)z + Qg] + 1>1> (11)

whereN andM (N') are the numbers of nearest neighbours of central $it€); we are going

to work on a bidimensional systetW(= M = 4 andN’ = 2). mg (m3) with @ = z or

x are the longitudinal and transverse magnetizations corresponding=td,/2 (S = 1); ¢5

(o = z, x) are the longitudinal and transverse quadrupolar moments corresponding fio

B = 1/kgT (we takekz = 1 for simplicity), (...) indicates the usual canonical ensemble
thermal average for a given configuration and the sums run over all nearest neighbours.

To perform thermal averaging on the right-hand side of equations (6)—(11), we follow the
general approach described in [15] and [16]. First of all, in the spirit of effective field theory,
multi-spin correlation functions are approximated by products of single-spin averages. We
then take advantage of the integral representation of the Dirac delta distribution, in order to
write equations (6), (7), (8), (9) and (10), (11) in the form

o o 1 iwi N irJ SZ irJ'o;
ml = / dw £ (w, 91)5/ dré nl;[1<é ) jl“[ﬂ(e' i) (12)
S S 1 iwi i irJo?
my = | dw £ (w, Q)o— [ dre” [ ) (13)
2 ioi
1 oN
4 = f dw g5 (w, ) >~ / dre” [ ) (14)
j=1
where
o 1 Y1 1 2 2
£ 01, 9) = 5~ tanhip,/s2 + 2 (15)
i+
2sinh[8,/y? + Q3]
22, Q) = Y2 (16)
Jy2+ Q2% 2coshB,/y2+ Q3]+ 1
s 1 12y%+Q3) coshB,/y2 + Q3] + Q2
8. (2. ) = —— T (17)
Y2 TR 2coshB,/ys + Q3]+ 1
with

2, Q1) = £7(Q1, 1) Fi(y2, Q) = £2(Q0, y2) g3 (y2, Q) = g5 (2, y2).

We now introduce the probability distribution of the spin variables (for details see Saber
[26] and Tuckert al [27]).

P(0%) = 3[(1+2n0)8(0° — 3) + (L — 2m?)3(c + 3)] (18)
P(5%) = (g5 +m3)8(S* — 1) + (1 — g0)5(5%) + (g5 — m3)s(5* +1). (19
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Using these expressions and equations (12)—(14), we obtain the following set of equations:

M N N—v p y N—-Q+y)

mg = M+NZZZZZZZ D S

n=0v=0 y=0i1=0 i»=0 j1=0 j>=0 jz=
vtiztip ¢ qyvtistiz irtio ¢ o Sy jitjatja(,, SYN—(v+j2tj3)
X2 (=1 (m7)*"(q;) (m3)

J
xf7 (*(M —2pu) —J(N — (v +2y), Ql)) (20)
Z Z Z CN Cf Cp T (Dt g athe £S5 (i(N/ —2u), Qz) (21)
2
M= Okl Okz
Z Z Z CN C,/:lCN /4( 1)k12k1+k2 (mg)k1+kzgf (;J(N/ —21), QZ) ] (22)
M= 0/(1 Okz 2

We have thus obtained a set of self-consistent equations (20)—(22) for the moments that
can be solved directly by numerical iterations. The total longitudinal magnetizatiaf the
system is given by

M

—= =m% +2m? (23)
NA < <
whereN, is the total number of A atoms. The sublattice longitudinal magnetizatibnan
be evaluated as

=—2m? f3(J, Q). (24)
Thus, the total longitudinal magnetizatidf, can be expressed as
M, = MO[1 - 4f5(J, Q)] (25)
where
M2 = Nam?.

Below the transition temperatufig, M? takes a finite value. Accordingly, if the compensation
point at which the total magnetization reduces to zero may existin the system, the compensation
temperaturd} can be determined exactly from the conditify = O for 7, < T, namely

1=4f5(J, Q) for T, < T,. (26)
In the vicinity of the transition temperatuf, equation (18) can be expressed as
q=qo+q0° 27
where
N u N-—n J
Z > Z clcpel H(—phathgs [—(N/ —2w), Qz] 8[ky + k2, i].
2
u=0k1=0 ko=

In order to determine the transition temperatdre let us expand the right-hand sides of
equations (20) and (21); using equation (22), we obtain the following equatiendadsm:

0 = a100 + agym + azo’m + ajoom? + azgo + aggm® + - - - (28)
m = b10(7 (29)
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where the coefficients;; are given by

M N N—v p M—p v y N—(ty) jitjotjs

EE—93)3)3) 3D 3D 3D DD DD i l=

n=0v=0 y=0i13=0 ip=0 j1=0 j,=0 j3=0 i3
> C}I,V_v C;:Cit’l—uc;lc;fzcjl_:*(\”y)Cij31+/2+132u+i1+i2 (_1)v+i1+i2q(j)1+j2+13*13q123
J/

sza [(E(M —2u)—J(N—(v+ 2)/)) , Ql] 8[iy +ip + 2i3, i]

X8[(N — (v + j2+ ja)), j]
and

1 N u N-un ) N _J
bio= 55 DD ) GGGy (-2t pS [T(N/ —2u), 92] 8[k1 + k2, 1.
p.=0 kl=0 k2=0

If we substitute equation (25) into equation (24), we obtain an equatian éthe form

o =ao+bo+... (30)
with

a = ayo + ap1bio and b = a1b?y+ axibio + arobiy + aso + agsb3y.
The second-order phase transition line is then determined by the condition

a=1 and b < 0. (31)

The sublattice magnetizatienis given by

s, l—a

ot = (32)
For the transition to be of the second order, the right-hand side of equation (32) must be
positive. If this is not the case, the transition is of first order, and hence the point at which
a = 1andb = Oisthe tricritical point. To find the first-order transition line intie (J, 2/J)
plane we proceed as follows: apply an external magnetic figldand derive the equations
analogous to (20)—(22) to obtain the magnetizatidnas a function off'/J, « (a = J'/J),
Q/J (21 = Q2 = Q) andh/J. If the transition is of first order the isotherms in thef(
h/J) plane, for fixed values df / J, 2/J anda have the typical S-shape of the Van der Waals
isotherms and, as usual, the first-order transition point is determined by the Maxwell rule. We
extrapolate td:/J = 0 to obtain the first-order transition temperature when no external field
is applied as a function ¢2/J anda.

3. Results and discussion

We are now able to study the magnetic properties (compensation and transition temperature
and magnetization curves) of the two-dimensional decorated ferrimagnetic Ising model in a
transverse field. For simplicity, we assume that the transverse field acting on the system is
homogeneous, i.€; = Q, = Q.

For the system under consideration, the calculations show that the right-hand side of
equation (32) is always positive. Hence, all the transitions are of second order.

First, let us examine the variation of the transition temperature versus the magnitude of
the transverse fiel/J for several values of the rati® of the exchange interactions and
J (e = J’/J). The results are shown in figure 2. The dotted line denotes the compensation
temperaturdy/J which is obtained from equation (22), while the solid lines denote the critical
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3.00 —

2.00 —

Tcid

1.00 —

0.00 2.00 4.00 6.00

QN

Figure 2. The phase diagram in thg'(J, ©/J) plane of the decorated ferrimagnetic system
depicted in figure 1. The solid and dashed lines represent the critical tempefatanel the
compensation temperatufgrespectively. The number labelling each line denotes the parameter

8.00 —

6.00 —

Qc/d

4.00 —

2.00 —

0.00
\ \ T ‘ \ \ \
0.00 1.00 200 ¢ 3.00 4.00 5.00

Figure 3. The variation of the critical transverse fieftl. /J with « (solid line); the dashed line
represents the compensation transverse f&ld/. «. is the value ofx above which the system
exhibits a compensation point.
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0.40 —

0.30 —

MZ/NA’

0.20 —

0.10 —

0.00
\ \ \ \ \
0.00 0.50 1.00 150 2.00 2.50
T/

Figure 4. The temperature dependence of the total magnetizatinss plotted for the two-
dimensional decorated ferrimagnetic system, when two special sets of pair v@luesa() are
selected: the curve labelled A is obtained for (2.5,3.0); the curve labelled B is the result for (2.0,
1.5).

1.60 —

1.20 —

Mz /Ny

0.80 —

0.40 — A

0.00 ‘ ‘ ‘

0.00 2.00 4.00 6.00

Q/J

Figure 5. The variation of the total magnetizatia, with Q for 7 = 0, for selected values of.
The curve A corresponds to= 3.5 and the curve B correspondsdo= 1.5.
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temperaturd,/J (which is obtained from equations (27)).We can seeZpAl is independent

of w. It is shown that bothr;/J and 7./J decrease from their maximum values which
correspond t&2/J = 0 to vanish at some critical value of the transverse field. Depending on
the values o and<2, 7./ J is smaller or larger thaffi./ J, that is the compensation point does
not exist for any values af and<2. We have found that far > 2.88 there is a compensation
point for anyQ smaller thanQ. (see curvex = 3.0), for 230 < « < 2.88 we have a
compensation point only in a limited range @f for examplea = 2.5, the system exhibit

a compensation point for.873 < Q < 4.142, and fore < 2.30 there is no compensation
phenomena.

In figure 3 we have plotted the variation, with, of the critical transverse field
Q./J (compensation transverse fiel} /J) at which the critical temperature (compensation
temperature) reduces to zero. It is seen gt/ varies linearly withe, while @, /J remains
constant and is equal to 3.873. A compensation point exist ofly/i§f > ,/J, thatis when
« is greater than a critical value which is equal to 2.30.

Let us now examine the variations of the total magnetizatirof the system. Figure 4
shows the variations aoff, with the temperature for selected valuesoanda. It is seen that
the M, curve corresponding t@ = 3.0 and2 = 1.0 exhibits a compensation point beldy,
while the M, curve corresponding t®@ = 1.5 andQ2 = 2.0 does not show any compensation
point. The variations oM, with Q whenT = 0 are shown in figure 5. Depending anM,
can have two different behaviours. For- «., M, shows a compensation point (curve A) and
for o < «, there is no compensation point (curve B). All of these results are consistent with
the predictions derived from figures 1 and 2.

4., Conclusion

In this work we have investigated the magnetic properties of a two-sublattice decorated Ising
ferrimagnetic system composed of two magnetic atoms A and BSyith: 1/2 andSz = 1

in a transverse field. We have shown that the compensation tempefathes the same
behaviour as the critical temperatufg that isT, decreases when we increase the transverse
field  and vanishes at a critical value@fwhich is the compensation transverse field The
compensation temperature and transverse figld<¢;) are independent of the ratia The
system studied here may be simple, but fruitful, from both the theoretical and material science
points of view. We hope that our study will stimulate further the theoretical investigations
and/or experimental measurements
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